

Structural Systems

Concrete Systems

One-Way vs Two-Way systems
Flat plate systems
Beam and joist systems
PT vs Mild Reinforcing

Tilt Panels

Precast

Steel Systems

Composite Framing
Steel Joists
Steel deck
Metal Buildings
Bolts vs Welds

Wood Systems

Post and Beam vs Bearing Wall
Solid Sawn Lumber
Composite/Manufactured Lumber
Glulam Beams \& Columns
Open web trusses (Floor and Roof)
Heavy Timber
Mass timber

CFS Systems

Stud \& Joist sizes
Trusses
Deck \& Plank
Load bearing vs non-load bearing
Proprietary Systems

Questions?

Gravity Practice Problems

BEAM ANALYSIS

$$
\begin{aligned}
& \text { 1. } R_{A}=\text { ? } \\
& \text { 2. } R_{B}=\text { ? }
\end{aligned}
$$

BEAM ANALYSIS

Simplify Loads.

Rules to Remember:

- $\Sigma \mathrm{F}=0$
- $\Sigma \mathrm{M}$ about one point $=0$

BEAM ANALYSIS

$$
\begin{aligned}
& \sum \mathrm{M} \text { about one point }=0 \\
& \Sigma \mathrm{MA}=0 \\
& \Sigma \mathrm{MA}=(50 \mathrm{kips} \times 15 \mathrm{ft})+(\mathrm{RB} \times \\
& 20 \mathrm{ft})=0 \\
& \Sigma \mathrm{MA}=750 \mathrm{kips}+20 \mathrm{RB}=0 \\
& \mathrm{RB}=-750 \text { kips } / 20 \\
& \mathrm{RB}=37.5 \text { kips }
\end{aligned}
$$

BEAM ANALYSIS

$$
\begin{aligned}
& \Sigma F=0 \\
& \text { RA }-50 \mathrm{Kips}+37.5 \mathrm{kips}=0 \\
& \text { RA }=12.5 \mathrm{kips}
\end{aligned}
$$

COLUMN ANALYSIS

Floor Dead Load = 35 psf
Floor Live Load = 40 psf
HSS6x6x1/4 columns; $r=2.34$ in

1. What is the center column load?
2. What is the maximum allowable height of the column, considering stability?

COLUMN ANALYSIS

Determine Loads.

Floor Dead Load = 35 psf
Floor Live Load = 40 psf

Total Factored Area Load = $(1.2 \times 35 \mathrm{psf})+(1.6 \times 40 \mathrm{psf})=$ 106 psf

COLUMN ANALYSIS

Determine tributary area

AT $=[(20 \mathrm{ft}+30 \mathrm{ft}) / 2] \mathrm{x}$ [($20 \mathrm{ft}+20 \mathrm{ft}$) / 2]

AT $=500 \mathrm{sqft}$

COLUMN ANALYSIS

Determine column load

P = At x area load $=106$ psf
x 500 sqft
P = 53 kips

COLUMN ANALYSIS

Determine maximum column length for stability

For a steel column, this limit is as follows:

KL/r < 200

K = Effective Length Factor
L = Unbraced Length of Column
$r=$ Radius of Gyration

COLUMN ANALYSIS

$\mathrm{KL} / \mathrm{r}<200$
$r=2.34$ in

COLUMN ANALYSIS

Determine maximum column length for stability

For a steel column, this limit is as follows: $\mathrm{KL} / \mathrm{r}<200$

K = Effective Length Factor
L = Unbraced Length of Column
$r=$ Radius of Gyration

COLUMN ANALYSIS

$$
\begin{aligned}
& \mathrm{KL} / \mathrm{r}<200 \\
& \mathrm{r}=2.34 \mathrm{in} \\
& \mathrm{~K}=0.7
\end{aligned}
$$

$$
0.7 \times L / 2.34=200
$$

$$
L=200 \times 2.34 / 0.7=668 \text { in }
$$

$$
668 \mathrm{in} / 12 \mathrm{in} / \mathrm{ft}=55 \mathrm{ft} \text { maximum }
$$

Questions?

FOUNDATIONS

SHALLOW FOUNDATIONS

MAT FOOTING

STRAP FOOTING

Shallow Foundation Design

Shallow foundations are types of foundations that are supported from the soil.
Typically used on lighter and shorter buildings.
Bearing pressures typically vary from 2,000 psf to 7,000 psf.
Typical to consider uniform distribution of load
 across full area of footing
Shape and proportion of footings can impact bearing capacity

TYPICAL SPREAD FOOTING AT COLUMN

Deep Foundation Design

Deep foundations are defined as foundations whose depth is larger than its width
Typically used for higher capacities and reduced settlement

Simple terms is to consider installing columns into the ground

Capacities are distributed vertically rather than horizontally.
Can rely on both skin friction and end bearing

STRAIGHT SHAFT

BELLED PIER

DRILLED PIER FOUNDATIONS

DRILLED PIERS

Typically use larger diameters and single piers vs grouped to increase capacity
Steel casing may be required if soils are prone to caving or if the water table is present
Casings will reduce skin friction resistance capacity
Caisson is just a drilled pier with full watertight casing.
Reinforcing cages treated similar to a concrete column but do not necessarily need to go full depth

(a) Group and single pile on rock or very firm soil stratum.

(c) Offshore pile group.

(b) Group or single pile "floating" in soil mass.

(e) Pile penetrating below a soil layer that swells (shown) or consolidates.

PILE FOUNDATIONS

Many types of Piles:

Augercast / CIP piles
Precast piles
Steel piles
PILES
Wood Piles
Sheet Piles
Micro/Macro Piles
Driven vs Drilled

RETAINING WALLS

Gravity wall

Basement wall

Bridge abutment wall

Anchored bulkhead

Reinforced soil wall

Tieback wall

Types of Retaining Walls

OVERTURNING

SUDING

BEARING

Cantilevered Retaining Walls Modes of Failure

RETAINING
 WALL LOADING

Questions?

Retaining Wall Practice Problems

RETAINING WALL PROBLEMS

A. Determine the horizontal shear force acting on the wall
B. Determine overturning moment.
C. Does the wall require a shear key?

GIVENS
Active Earth Pressure $=35 \mathrm{psf} / \mathrm{ft}$ Soil Density = 120 pcf
Coefficient of Friction $=0.35$
Surcharge Lateral Load $=150$ psf

Passive Earth Pressure $=375 \mathrm{psf} / \mathrm{ft}$ Concrete Density $=150$ pcf
Axial Dead Load $=20$ plf psf

RETAINING
 WALL
 PROBLEMS

A. Horizontal Shear
$\mathrm{H}_{\text {soil }}=35 * 10 * 10 / 2=1,750 \mathrm{lbs} / \mathrm{ft}$
$H_{\text {surcharge }}=150 * 8.5=1,275 \mathrm{lbs} / \mathrm{ft}$
$H_{\text {total }}=H_{\text {soil }}+H_{\text {surcharge }}$
$H_{\text {total }}=1,750+1,275=3,025 \mathrm{lbs} / \mathrm{ft}$

RETAINING WALL PROBLEMS

B. Overturning Moment
$M_{\text {soil }}=1,750 * 3.33=5,833 \mathrm{lb}-\mathrm{ft} / \mathrm{ft}$
$M_{\text {surcharge }}=1,275 * 5.75$
$=7,331 \mathrm{lbs}-\mathrm{ft} / \mathrm{ft}$
$M_{\text {total }}=M_{\text {soil }}+M_{\text {surcharge }}$
$M_{\text {total }}=5,833+7,331$
$=\underline{13,165 \mathrm{lbs}-\mathrm{ft} / \mathrm{ft}}$

RETAINING

WALL

PROBLEMS

C. Sliding
$H_{p}=375 * 2.5 * 2.5 / 2=1,172 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\text {soil }}=120 * 8.5 * 4=4,080 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\text {wall }}=150 * 1 * 6=900 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{ftg}}=150 * 1.5 * 7.25=1,631 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\text {total }}=4,080+900+1,631=6,611 \mathrm{lb} / \mathrm{ft}$
$H_{D L}=0.35 * 6,611=2,314 \mathrm{lb} / \mathrm{ft}$
$\mathrm{H}_{\text {resisting }}=1,172+2,314=3,486 \mathrm{lb} / \mathrm{ft}$
$\mathrm{H}_{\text {resisting }} / \mathrm{H}_{\text {total }}=3,486 / 3,025 \mathrm{lb} / \mathrm{ft}=1.15$
$1.15<1.5$ - NEED SHEAR KEY

Questions?

LATERAL FORCES

ROLAND HILL, P.E.

Wind and Seismic Forces to Buildings

DETERMINING WIND FORCES

Main Wind Force Resisting System (MWFRS) Forces
VS

Components and Cladding (C\&C)Forces

Wind Design (MWFRS) per ASCE 7

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{w}}=\mathrm{Qs} *(\mathrm{GCp}+/-\mathrm{Gcpi}) * \mathrm{~A} \\
& \mathrm{Q}_{\mathrm{s}}=\text { Wind Velocity Pressure } \\
& \mathrm{Q}_{\mathrm{s}}=\mathbf{0 . 0 0 2 5 6} * \mathrm{~K}_{\mathrm{z}}^{*} * \mathrm{~K}_{\mathrm{zt}} * \mathrm{~K}_{\mathrm{d}} * \mathrm{~V}^{2}
\end{aligned}
$$

$\mathrm{V}=$ Basic Wind Speed (mph)
K factors = Height, Topography \&
Direction
GCp = Product of Gust Effect and Wind Pressure coefficients for external and internal pressures

A = Surface Area

Basic Wind Speed Map V (mph)

Maps based on:
Location and
Building Risk Classification

K Factors Tables

Kz - Height Factor

varies on height and exposure
Kd - Directional Factor
varies on structure type
Kzt - Topographic Factor

Structure Type	Directionality Factor $\mathbf{K}_{\mathbf{d}}{ }^{\text {* }}$	Height above ground level, z		Exposure		
Buildings Main Wind Force Resisting System Components and Cladding				B	C	D
		ft	(m)			
		0-15	(0-4.6)	0.57	0.85	1.03
		20	(6.1)	0.62	0.90	1.08
		25	(7.6)	0.66	0.94	1.12
Arched Roofs	0.85	30	(9.1)	0.70	0.98	1.16
		40	(12.2)	0.76	1.04	1.22
		50	(15.2)	0.81	1.09	1.27
Chimneys, Tanks, and Similar Structures		60	(18)	0.85	1.13	1.31
Square	0.90	70	(21.3)	0.89	1.17	1.34
Hexagonal	0.95	80	(24.4)	0.93	1.21	1.38
Round	0.95	90	(27.4)	0.96	1.24	1.40
		100	(30.5)	0.99	1.26	1.43
		120	(36.6)	1.04	1.31	1.48
Solid Freestanding Walls and Solid		140	(42.7)	1.09	1.36	1.52
Frestanding and Attached Signs	0.85	160	(48.8)	1.13	1.39	1.55
		180	(54.9)	1.17	1.43	1.58
		200	(61.0)	1.20	1.46	1.61
Open Signs and Lattice Framework	0.85	250	(76.2)	1.28	1.53	1.68
		300	(91.4)	1.35	1.59	1.73
		350	(106.7)	1.41	1.64	1.78
Trussed Towers		400	(121.9)	1.47	1.69	1.82
Triangular, square, rectangular	0.85	450	(137.2)	1.52	1.73	1.86
All other cross sections	0.95	500	(152.4)	1.56	1.77	1.89

graphic Factor, K_{zt}

re 26.8-1

ESCARPMENT

2-D RIDGE OR 3-D AXISYMMETRICAL HILL

External

Pressure
 Coefficients

WALLS AND ROOFS (MWFRS)

All Heights

Figure 27.4-1	External Pressure Coefficients, C_{p}	Walls $\mathcal{\&}$ Roofs
Enclosed, Partially Enclosed Buildings		

GABLE, HIP ROOF

Internal
 Pressure
 Coefficients

Open
Enclosed
Partially Enclosed

Enclosure Classification	$\left(G C_{p i}\right)$
Open Buildings	0.00
Partially Enclosed Buildings	+0.55
	-0.55
Enclosed Buildings	+0.18
	-0.18

DETERMINING SEISMIC FORCES

Seismic Hazard Map

Seismic Design

Equivalent Lateral Force
Procedure per ASCE 7
$\mathrm{V}=\mathrm{Cs} * \mathrm{~W}$
V = Seismic Base Shear
$\mathrm{C}_{\mathrm{s}}=$ Seismic Response Coefficient
W = Seismic Mass
$\left.\begin{array}{l}\text {-Ground Motion } \\ \text {-Site Class }\end{array}\right\}$ SITE

Seismic Design Parameters

FEMA 454
-Ground Motion
-Fundamental Period of Structure

- Seismic Use Group and Importance Factor
-Seismic Design Category
- Building Configuration
-Response Modification Factor

Soil Profile \& Ground Motion

Harder Soils have larger and shorter accelerations

Soft soils have smaller but longer accelerations

IBC Seismic

 Design Category6 Site Categories -
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \& \mathrm{~F}$
5 Design Categories-
A, B, C, D \& E

Site
Classification
-A: Hard Rock
-B: Rock
-C: Very Dense Soil, Soft Rock
-D: Stiff Soil (Default)

- E: Soft Clay Soil
-F: Soils Requiring Site Analysis (Basically Garbage)

Seismic Design Category

Value of $S_{D S}$	Occupancy Category		
	Ior II	III	IV
$S_{D S}<0.167$	A	A	A
$0.167 \leq S_{D S}<0.33$	B	B	C
$0.33 \leq S_{D S}<0.50$	C	C	D
$0.50 \leq S_{D S}$	D	D	D

TABLE 11.6-2 SEISMIC DESIGN CATEGORY BASED ON 1-S PERIOD RESPONSE ACCELERATION PARAMETER

PERIOD RESPONSE ACCELERATION PARAMETER			
Value of $\boldsymbol{S}_{D 1}$	OCCUPANCY CATEGOAY		
$S_{D 1}<0.067$	A	III	IV
$0.067 \leq S_{D 1}<0.133$	B	A	A
$0.133 \leq S_{D 1}<0.20$	C	B	C
$0.20 \leq S_{D 1}$	D	D	D

-Design Category A $\}$ NO SPECIAL DETAILING

- Design Category B
-Design Category C DETAILING
-Design Category D 7 SPECIAL SEISMIC
-Design Category E \int DETAILING

Response Modification R

Dependent on type of structural system and Seismic Design
Category
Not all structural systems are allowed in Seismic Design
Categories

Seismic Force Resisting Systems:

Shear Walls
Braced Frames
Moment-Resisting Frame
Dual Systems
Cantilevered Column
Undefined Systems

Seismic Response

 Coefficient CsDependent on type of structural system and Seismic Design Category

Not all structural systems are allowed in Seismic Design
Categories

Types of Structural Systems:

$$
\begin{array}{ll}
C s=S_{D S} /(R / I) & \text { (Max Value) } \\
C s=S_{D 1} / T^{*}(R / I) & T<T_{L} \\
C s=S_{D 1} T_{L} / T^{*}(R / I) & T>T_{L} \\
C s_{\min }=0.044^{*} S_{D 1}{ }^{*} I_{e} &
\end{array}
$$

Seismic Response Coefficient Cs

Different Equations Based On Building Period:

Dependent on type of structural system and Seismic Design
Category
Not all structural systems are allowed in Seismic Design
Categories

$$
\begin{array}{ll}
C_{S}=\frac{S_{D S}}{\left(\frac{R}{I_{e}}\right)} & (\text { Max Value) } \\
C_{S}=\frac{S_{D 1}}{T\left(\frac{R}{I_{e}}\right)} & \left(\mathrm{T}<\mathrm{T}_{\mathrm{L}}\right) \\
C_{S}=\frac{S_{D 1} \cdot T_{L}}{T^{2}\left(\frac{R}{I_{e}}\right)} & \left(\mathrm{T}>\mathrm{T}_{\mathrm{L}}\right) \tag{L}\\
C_{S \text { min }}=0.044 S_{D S} \cdot I_{e}>0.01 \quad(\text { Min Value })
\end{array}
$$

Seismic Response Coefficient Cs

Dependent on type of structural system and Seismic Design Category

Not all structural systems are allowed in Seismic Design
Categories

Questions?

Lateral
Practice Problems

LATERAL PROBLEMS

For a 2-storey square building in Austin, we want to determine the lateral load requirements that we will have for design.

We need to determine whether wind or seismic controls and figure out the design loads.

LATERAL PROBLEMS

1. Determine the base shears for both wind and seismic load cases.
2. For the controlling load case, determine the base overturning moment.

GIVENS

- $30^{\prime} \times 30^{\prime}$ square building
- Uniform wind pressure of 25 psf
- Uniform DL=110 psf at both elevated floors
- Seismic Design Category " A " ($C_{S}=0.01$)

SEISMIC BASE SHEAR

Determine Floor Weight

$$
\begin{aligned}
& A_{L 2}=A_{\text {Roof }}=\left(30^{\prime}\right)^{2}=900 \mathrm{ft}^{2} \\
& W=900 \mathrm{ft}^{2} \times 110 \mathrm{psf}=99,000 \mathrm{lb}
\end{aligned}
$$

Determine Seismic Shear

$$
\begin{aligned}
& V=C_{S} W \\
& V=0.01 \times 99,000 \mathrm{lbs} \\
& \begin{aligned}
V_{L 1} & =V_{\text {Roof }}=0.01 \times 99,000 \mathrm{lb} \\
& =990 \mathrm{lb} / \text { floor }
\end{aligned} \\
& V_{\text {BASE }}=2 \times 990 \mathrm{lb}=1980 \mathrm{lb}
\end{aligned}
$$

WIND BASE SHEAR

Determine Tributary Areas

$$
\begin{aligned}
& A_{L 2}=30 \mathrm{ft}\left[\frac{15 \mathrm{ft}}{2}+\frac{10 \mathrm{ft}}{2}\right]=375 \mathrm{ft}^{2} \\
& A_{\text {Roof }}=30 \mathrm{ft}\left[\frac{10 \mathrm{ft}}{2}\right]=150 \mathrm{ft}^{2}
\end{aligned}
$$

Determine Wind Shears

$$
\begin{aligned}
& V=p A_{T} \\
& V_{L 2}=25 p s f \times 375 \mathrm{ft}^{2}=9375 \mathrm{lb} \\
& V_{\text {Roof }}=25 p s f \times 150 \mathrm{ft}^{2}=3750 \mathrm{lb} \\
& \begin{aligned}
V_{B A S E} & =9375 \mathrm{lb}+3750 \mathrm{lb} \\
& =13125 \mathrm{lb}
\end{aligned}
\end{aligned}
$$

WIND CONTROLS!

OVERTURNING

Calculate Overturning Moment for Wind Load Case
$M_{O}=V h$
$M_{O}=(9.4 \mathrm{kip})(15 \mathrm{ft})+(3.8 \mathrm{kip})(25 \mathrm{ft})$
$M_{O}=236 \mathrm{kip} \cdot f t$

Calculate Overturning Reactions
$R_{y}=\frac{236 \mathrm{kip} \cdot \mathrm{ft}}{30 \mathrm{ft}}=7.9 \mathrm{kip}$

Questions?

Thank You

